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Abstract. Visualization plays an important role in Epistemic Network Analysis 

(ENA), not only in graphical representation but also to facilitate interpretation 

and communicate research findings. However, there is no published description 

of the design features behind ENA network graphs. This paper provides this 

description from a graphic design perspective, focusing on the design principles 

that make ENA network graphs aesthetically pleasing and intuitive to understand. 

By reviewing graphic design principles and examining other extant network 

visualizations, we show how the current ENA network graphs highlight the most 

important network characteristics and facilitate sense-making.  

Keywords: Epistemic Network Analysis, Network Graphs, Data Visualization, 

Design Principles 

1 Introduction 

The purpose of this paper is to explain the network graph visualization of Epistemic 

Network Analysis (ENA) from a graphic design perspective. ENA is a network analysis 

technique for quantifying and visualizing the connections among coded data by 

modeling the co-occurrence of codes [19]. Such connections are represented as 

weighted networks that can be interpreted both statistically and visually. Since its 

inception, ENA has become a dominant analytical technique used in Quantitative 

Ethnography (QE) studies [12]. QE is a growing field unifying rigorous computational 

methods and grounded ethnographic techniques to facilitate thick description at scale 

[18]. 

ENA’s success is not only attributable to its analytical affordances, but also the 

statistically meaningful and visually interpretable network visualizations it produces. 

In previous work, Bowman et al. [3] discussed how the alignment between ENA 

network visualization and its summary statistics is achieved from a mathematical 

perspective. In this paper, we explore how ENA network graph visualizations facilitate 

interpretation of network models and communication of analytic findings. Thus, the 

intended contribution of this work is to explicate the graphic design principles 

manifested in ENA visualizations and to explore how ENA network graph 

visualizations can be used as “tools for thinking” [17].  
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In what it follows, we center the discussion around three guiding questions: 

(1) What are the graphic design principles that inform the design of ENA network graph 

visualizations? (2) Why do ENA networks require custom visualizations rather than 

existing network visualization strategies? and (3) How were the aforementioned 

graphic design principles applied to design ENA network graph visualizations? 

2 Theory: Graphic Design 

2.1 Design Elements 

Design elements, also known as elements of design, are the most fundamental graphic 

design units from which all visual artifacts are created [4, 16]. In the context of graphic 

design, the most commonly cited seven design elements include point, line, shape, 

color, texture, value, and space [4, 16]. Each type of design element can be described 

using various attributes. For example, lines can hold attributes such as being thick, thin, 

dashed, dotted, horizontal, vertical, and so on.  

Design elements are usually used in combination to form complex items, or 

artifacts. For example, Node-Link diagrams, as shown in Fig. 1, are a type of network 

graph representing the relationships between objects: the objects are represented with 

points (nodes), and the relationships between objects are represented with lines (links) .  

 

Fig. 1. A simplified representation of a Node-Link diagram.  

To convey visual messages efficiently in the construction of artifacts, designers 

apply design principles to design elements in order to regulate the arrangement of and 

interaction among the elements [7]. Before we discuss the specifics of design principles, 

there are two fundamental attributes of the seven design elements that are often 

manipulated to apply various design principles, namely the visual weight and the 

placement of design elements.  

Visual Weight of Design Elements. Every design element in a visualization exerts an 

attractive force that draws the eye of the viewer. The greater the force, the more the eye 

is drawn. This force is called visual weight [4]. For example, research shows that an 

object is visually heavy if it is dark or large [22, 23]. Therefore, the variance of visual 

weight is crucial in realizing effects of design principles that emphasize the creation of 

difference such as contrast and visual hierarchy, which are discussed in detail below.  
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Placement of Design Elements. While visual weight is usually applied to emphasize 

differences between individual elements, the placement of design elements is usually 

used to establish a visual connection among elements. For example, placement can be 

used to indicate relationships, such as similarity between objects. Research shows that 

viewers tend to interpret objects that are placed physically closer as being associated: 

the closer they are, the stronger the association is [4]. Placement can also be used to 

create flow by arranging elements with different visual weights in a certain pattern [4]. 

For example, when objects are placed in a way that larger or darker ones are in the 

foreground while smaller and lighter ones are in the background consistently, viewers 

tend to feel a sense of depth as larger and darker objects appear to be closer, even in a 

two-dimensional space. With such a sense of depth, even without explicit gestural signs 

such as arrows, a flow is present from near to far that guides viewers through the 

visualization along a particular path. These two major applications of placement 

manifest themselves respectively in two design principles called proximity and 

perspective, which are discussed in detail below.  

2.2 Design Principles 

Design principles are frameworks that define and regulate how design elements interact 

with one another, with their context, and with their viewers [7, 9]. Through the 

appropriate application of design principles, designers can optimize the arrangement of 

design elements to convey specific visual messages. While there are dozens of 

variations of design principles used in graphic design [4], the following four principles 

are most pertinent to our discussion of network visualizations specifically. 

Design Principle 1: Contrast. Contrast refers to the use of differences in visual weight 

to signal differences in design elements [7]. Contrast can be formed when extra visual 

weight is given to one element relative to another. The greater the visual weight 

difference, the greater the contrast. Essentially, establishing contrast is dependent on 

the difference in attributes, such as shape and color.   

For example, in Fig. 2 no contrast exists on the left example because visual weight 

is evenly distributed given the elements are identical in both shape and color. On the 

right, contrast is present because of the different visual weights created by differences 

in color and shape. For example, elements in red attracts more attention as they carry 

more visual weight again a white background. We can also observe that the contrast is 

enhanced when the two elements contrast in both shape and size.  
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Fig. 2. Left: no contrast in shown due to equally distributed visual weight. Right: contrast is 

formed between elements with different shapes or colors.   

Design Principle 2: Visual Hierarchy. After we understand that Contrast can be 

achieved through the uneven distribution of visual weight, it is important to consider 

how we can take advantage of the distribution of visual weight to manage the 

distribution and path of viewers’ attention. In other words, designers want to control 

which information in the visualization is prioritized and in what order, a design 

principle called visual hierarchy.  

Visual hierarchy is the arrangement of design elements in order of importance, or 

in order of the intended sequence that designers expect viewers to land their eye on [4]. 

Because elements with similar visual weight will naturally exhibit similarity, the proper 

use of visual weights is foundational in signaling visual hierarchy [4]. Size and color 

are two primary ways to establish visual hierarchy. Research shows that the eye is 

naturally drawn to larger parts of a design first [23]. In design terms, that means a larger 

object has more priority than a smaller object. Similar to size, objects that are darker 

hold higher priority as well and are more likely to be seen before objects that are lighter. 

Therefore, it is important to make sure that the most important element that you want 

viewers to pay attention to holds the heaviest visual weight.  

Watzman [22] proposed the Squint Test to evaluate visual hierarchy. For example, 

to evaluate the visual hierarchy of the two examples in Fig. 3 below, simply squint your 

eyes at either example. As you look at it, is there a dominant element that attracts your 

eye first and the most? When the visual hierarchy is set up appropriately, the element 

you noticed first should be the one with the heaviest visual weight, such as the thickest 

and darkest lines.  
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Fig. 3. Left: no visual hierarchy is present because all lines are in identical size and color. Right: 

visual hierarchy is formed through the variation of visual weight as represented by differences in 

size and/or color. 

Design Principle 3: Perspective. While visual hierarchy triggers the intended attention 

sequence by manipulating visual weights, perspective is applied to create a flow along 

which viewers’ eyes travel through the visualization. Specifically, perspective 

describes a sense of depth, with larger or darker objects appearing closer to the viewer 

[4]. Once depth is created, viewers will navigate a visualization from most proximate 

elements to most remote. There are many ways to create flow, such as shadows, 

gradient, size, and color. The two that are related to network visualization specifically 

are size and color given that points and lines are two major design elements used in 

networks.  

In the three examples in Fig. 4, although nodes and lines are placed in similar 

arrangement, they differ in size and color. By placing larger and darker elements in the 

foreground in a consistent manner such as the example on the right, a sense of depth is 

present and viewers’ eyes naturally flow from the foreground to background. Compared 

to the other two examples, although the middle one includes variance in size and color, 

a “see-through” effect is not present given that it does not have a consistent manner 

when it comes to the order of elements placement.    

 

Fig. 4. Left: perspective is absent due to the absence of depth created by the unified node and 

line attributes. Middle: perspective is absent despite the presence of depth due to inconsistent 

placement of nodes and lines with different visual weight. Right: perspective is present because 

of the ordered variance in elements’ visual weight and placement. 
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Design Principle 4: Proximity. Proximity refers to the use of relative distance between 

design elements to indicate relationship. When applying proximity, elements that are 

similar or related are placed into closer proximity to form a visual connection, while 

elements that are dissimilar or unrelated are place farther apart to disrupt or discourage 

visual connection [4].  

For example, assuming that a set of 12 nodes can be divided into three categories 

based on their similarity, Fig. 5 below shows how proximity conveys such a message 

visually. On the right, more similar nodes are clustered, or placed physically closer to 

one another than they are to any other nodes. This makes it easy for the viewer to 

identify which nodes are related to one another and which are not. 

 

Fig. 5. Left: nodes are placed in equal distance without proximity variance, providing no 

information about which nodes are similar or dissimilar. Right: the distance between nodes is 

varied to indicate similarity and difference. 

3 Background: Network Visualization 

Before we explain how the aforementioned graphic design principles are applied in 

ENA visualizations, we briefly review other extant network graph visualizations and 

discuss why they are not suitable for visualizing ENA networks. 

3.1 Graph Layout Algorithms 

Over the past three decades, a wide range of graph layout algorithms have been 

developed to support visualization of network models [2, 10, 13]. Among two-

dimensional layout methods that draw Node-Link diagrams, there are eight 

representative layouts in five families based on groupings commonly used in the 

literature [20, 21]. Due to space limitations, we present one popularly used and publicly 

available layout, the Fruchterman Reingold (FR) layout [10], as an example to explain 

why ENA models require custom visualizations.  

The Fruchterman Reingold (FR) layout belongs to the force-directed family, a class 

of algorithms that produces graphs by simulating interactions as a system of forces. The 

resulting layout is an “equilibrium state” of the system [10]. Since its inception in 1991, 

new FR variants are still introduced every year [21]. While each new FR variant might 

have its unique affordances, the resulting FR visualizations generally share the three 

characteristics below [6, 10, 11, 14]: 
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Fig. 6. Three graphs drawn in FR layout using igraph R package [5]. (a) and (b) represent the 

same six-node network with different node position. (c) represents a larger network of 20 nodes.  

1. Node positions are not deterministic. Each time the FR algorithm is run, it will result 

a visualization with slightly different node layout. For example, graphs A and B in 

Fig. 6 represent the same network model drawn using the same FR algorithm, but 

they have different node positions.  

2. Edge crossing and node overlapping are minimized. Since node position is not 

deterministic, the algorithm places nodes and edges iteratively until it approaches or 

fully satisfies this aesthetic criterion. For example, in relatively sparse networks such 

as A, B, and C in Fig. 6, edge crossing and node overlapping are fully avoided.    

3. Nodes that share more connections are closer to each other. As a force-directed 

algorithm, nodes in FR layout repulse each other when they get close and the edges 

act as springs that attract connected nodes together. As a result, a force balance is 

achieved in the graph, and nodes that are connected more strongly are placed closer. 

For example, in graph C, clusters are formed visually because the more connected 

nodes are placed closer together. 

3.2 Challenges in Visualizing ENA Networks 

As Bowman et al [3] argued, a key feature that differentiates ENA from traditional 

network analytical approaches is that ENA produces content-based summary statistics 

that can be used to compare the content rather than the structure of networks. In other 

words, instead of comparing networks using structural summary statistics such as 

network density without reference to specific nodes, ENA compares networks in terms 

of which nodes are connected and how more or less strongly they are connected. 

Therefore, (1) enabling such content comparison visually and (2) representing the 

resulting differences visually become two core challenges that ENA network graph 

visualizations need to address.  

To address the first challenge, ENA places its nodes in a network space through a 

process called co-registration, which results a single metric space with fixed node 

position for all networks in the same ENA model. With a set of fixed node position, 

multiple networks can be compared directly regarding connected nodes and connection 

strength. For example, in Fig. 7, since (a) and (b) share the same node position, it is 

visually clear that which pairs of nodes are strongly or weakly connected in one graph 
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but not the other. However, although (b) and (c) visually look identical, they are very 

different networks in terms of content. That is, which nodes are connected and their 

connection strength.   

 

 

Fig. 7. Three weighted networks with same density but different patterns of connections. 

Specifically, (a) and (b) have identical node position but different connection pattern. (b) and (c) 

have different node position but appear to be but in fact not identical connection pattern.  

The mathematical details of co-registration are beyond the scope of this paper and 

can be found in the work of Bowman et al. [3]. But in brief, co-registration is a process 

of producing network graph visualizations that meaningfully reflect the statistical 

properties of the network model. The fixed node position not only allows for 

meaningful comparison of the patterns of connections in multiple networks, also allows 

for interpretation of the metric space itself. Compared to the non-deterministic node 

position of FR layout (characteristics 1), ENA visualizes its network with a set of 

deterministic node position determined by co-registration. Furthermore, in ENA, the 

distance between nodes in the network space does not reflect connection strength as in 

FR layout, but represent similarity of the roles that different nodes have in network 

structure. The nodes that are closer to each other in an ENA space have more similar 

roles in the networks in which they appear. If an ENA network were visualized using 

force-directed algorithms such as FR layout, researchers would be unable to interpret 

the locations of networks in ENA space.  

While co-registration addressed the first challenge in terms of enabling content 

comparison visually, the second challenge about how to visually represent the resulting 

differences between networks still remains. However, the second challenge in more of 

a graphic design challenge than an analytical challenge. As an analytical method, ENA 

is designed to model connections in weighted networks that usually have a small 

number of nodes but are densely connected [19]. Edge-crossings are mostly 

unavoidable in such networks. While edge-crossings can hinder readability and should 

be avoided in network visualizations [7, 15], it is hard to realize in ENA networks given 

its high density, fixed node position, and straight-lined edges. Although force-directed 

algorithms such as FR layout are optimized to avoid edge-crossing (characteristic 2), 

this affordance is not applicable to ENA visualization because of ENA’s deterministic 

node position. Therefore, instead of removing edge-crossing, ENA visualizations need 

to represent connections in a readable and sensible way regardless of the potential edge-

crossing challenges posed by its high network density. In the following section., we 
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will elaborate on how the second challenge in addressed using graphic design 

principles.  

4 Applying Design Principles in ENA Visualizations 

In this section, we explain how the aforementioned four design principles—contrast, 

visual hierarchy, perspective, and proximity—are applied in the design of ENA 

visualizations. We use an undirected weighted network with density of 1.0 as a 

simplified example to demonstrate the transformation from a basic Node-Link diagram 

to an ENA visualization, step by step.  

4.1 Use of Contrast to Emphasize Edges 

Graph #1 in Fig. 7 represents a Node-Link diagram in a basic layout: nodes A, B, C, 

and D are connected using straight lines and connection weights are annotated using 

numbers next to each edge, varying from 0.2 to 1.0.  

There are two noticeable problems in Graph #1. First, there is no clear focal point 

to draw viewers’ attention. Since the structure of connections among codes are usually 

the primary research interest in ENA studies, we hope to attract viewers’ eyes more to 

the edges in the network. To do so, we break the evenly distributed visual weight in 

Graph #1 by increasing the color contrast between nodes and edges to make edges stand 

out, as shown in Graph #2. With the increased color contrast, the connections between 

nodes represented by edges become more easily noticeable.  

 

Fig. 8. Left: no color contrast between nodes and edges. Right: edges stand out because edges in 

red against white background creates stronger contrast  

Second, in Graph #1, in order to understand differences in connection strength, 

viewers have to process the magnitude differences of the numbers next to each edge, 

which increases cognitive load. Also, in dense networks where edge-crossing is 

unavoidable, placing numerals next to already crossed edges adds additional ambiguity 

to the visualization. Therefore, the visual appearance of the edges not only needs to 

help viewers discriminate between edges base on their weights but also needs to keep 
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the visualization as clean as possible. In next section, we explain how used the principle 

of visual hierarchy to emphasize stronger connections (edges with larger weights) and 

deemphasize weaker connections (edges with smaller weights).  

4.2 Use of Visual Hierarchy to Differentiate Connection Weights 

To help researchers identify the strongest connections between coded elements in ENA 

network graphs, we assign the highest prominence to the edge with heaviest weight. 

For example, in Graph #2, we want edge AC to be the edge that attracts the most 

attention.   

There are two ways to do this. One approach is to vary edge saturation (Graph #3), 

the other is to vary edge thickness (Graph #4). To vary saturation, we first assign the 

fully saturated color to edge AC, which has the largest weight, so that AC is the visually 

heaviest element in the graph. Then, we make the level of saturation of all the other 

edges proportional to their weights. For example, edge CD has a weight that is 80% of 

the weight of edge AC, so the level of saturation in edge CD is 80% that of edge AC. 

The end result of creating visual hierarchy through color saturation is shown in Graph 

#3. To vary edge thickness, we use the same process. The edge with the largest weight 

is assigned some maximum thickness, and the thicknesses of the remaining edges are 

scaled proportionally. The end result is shown in Graph #4.  

 

Fig. 9. The saturation of the edges in Graph # 3 is proportional to their weights. The thickness of 

the edges in Graph # 4 is proportional to their weights. 

While either Graph #3 or # 4 is sufficient to address the problem we identified in 

#2 by representing edge weigh differences visually, both of them can be improved. In 

Graph #3, the equal edge thickness makes the visual hierarchy difference not as 

noticeable as in Graph #4. In Graph #4, although the edge weight differences are 

immediately clear, the edge-crossings appear to decrease readability due to all edges 

being fully saturated. Therefore, we create the clearest visual hierarchy by using size 

and color simultaneously as represented in Graph # 5.  
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Fig. 10. Edges in Graph #5 are in different thickness and saturation to reflect actual edge weights. 

Heavier edges are thicker and more saturated than lighter edges. 

In Graph #5, by proportionally scaling both thickness and saturation, viewers can 

easily estimate the differences in edge weights not only for any two edges but also 

across the network structure as a whole. In scientific visualizations, the degree of visual 

weight difference should mirror the intended analytic difference [1, 15], and the 

proportional scaling of saturation and thickness accomplishes this. 

4.3 Use of Perspective to Guide Navigation 

As of now, in terms of inspecting edge weight differences, the version presented by 

Graph #5 is readable. To further guide viewers navigate the visualization as a whole, 

we applied perspective to create a flow. As discussed before, by placing larger and 

darker elements in the foreground in a consistent manner, a sense of depth will present 

and viewers’ eyes naturally flow from the foreground to background. To create such 

flow, on the basis of Graph #5, we adjust size of each node based on the connection 

made by that node. Since heavier edges are already placed on top of lighter edges and 

appear physically closer to viewers, large nodes automatically follow this pattern 

because node size in ENA is proportional to all the connection made by that code. By 

doing so, elements with heavier visual weight such as thicker and darker edges and 

large nodes are placed to be closer to viewers, while elements with relative lighter visual 

weight appear to be in the background. Such visual layering creates a flow to guide 

viewers’ attention travel from the strongest connection to the weakest connection in the 

network.  
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Fig. 11. Node sizes in Graph #6 are adjusted accordingly based on the connection weights  

From Graph #1 to Graph #6, using a simplified four-node weighted network, we 

demonstrated the transformation of an individual ENA network from a basic Node-

Link diagram to a version that reflects the current ENA visualization layout in use. By 

comparing Graph #1 and Graph #6 side by side as shown in Fig. 12, Graph #6 presents 

viewers with a visualization that is not only visually self-explanatory, but also takes 

less time to identify the connection strength differences across the network, even 

without the numerals next to edges.   

 

 

Fig. 12. Compare the initial Graph #1 with the finalized ENA visualization Graph #6 

4.4 Use of Proximity to Indicate Similarity and Difference 

As discussed, instead of arbitrarily placing nodes in a network space, ENA co-register 

its network space with its summary statistics and generates a set of fixed node position 

for an ENA model [3]. In an ENA network space, nodes that are placed more physically 

closer are more similar in terms of the role they play in the network. For example, in 

Graph #6 below, node B has more similarity with node D in the network as indicated 

by the close distance between them. This phenomenon of using physical distance to 

indicate relationship is an application of proximity. Proximity helps viewers quickly 

identify nodes that share similarity or difference based on the distance between them.  
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Fig. 13. In the too row, Graph #8 is the difference graph of Graph #6 and Graph #7. Edges in red 

in #8 represents the salient characteristics of #6, edges in blue in #8 represents the salient 

characteristics of # 7. Accordingly, in the bottom row, Graph #1, #9, and #10 are the basic Node-

Link diagram version of Graph #6, #7, and #8. 

Besides showing similarity and differences between nodes, the fixed node position 

is also an essential precondition to compare ENA networks visually. Because of the 

fixed node position, ENA can construct a subtracted network, which enables the 

identification of the most salient differences between two networks that belong to a 

same model. To do this, ENA subtracts the weight of each connection in one network 

from the corresponding weighted connection in another network, then visualize the 

connection strength difference. Similar as in individual networks, darker and thicker 

edges indicate larger differences in connection strength, and light and thinner edges 

indicate smaller differences in connection strength. Each edge is color-coded to indicate 

which of the two networks contains the stronger connection. For example, in Fig. 13, 

Graph #8 is a subtracted network of Graph #6 and #7. Based on the thickness and 

saturation of the color-coded edges, we can conclude that overall the subtracted 

network shows that relative to Graph #7, Graph #6 has the strongest connections in the 

upper right part of the space as presented by edge AC; although CD is also in red, the 

difference is not as strong as in AC because of the thinner and lighter edge of CD. 

Graph #7 has the strongest connections in the lower left part of the space as represented 

by BD relative to Graph #6.  

5 Discussion 

In this paper, we discussed ENA network graph visualizations from a graphic design 

perspective. We reviewed pertinent graphic design principles and explained how those 
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design principles manifested themselves in the design of ENA visualizations. We also 

argued that ENA networks, as weighted networks that usually have a relatively small 

set of nodes and high density, are not suitable to be visualized using extant network 

layouts such as force-directed algorithms that apply nondeterministic node position and 

prioritize aesthetic criteria such as evenly node distribution and minimum edge 

crossings.  

 We have consistently emphasized that ENA visualizations are not only designed to 

be aesthetically pleasing, but also to convey visual messages that are mathematically 

consistent with its content-based summary statistics. While researchers can conduct a 

variety of statistical analyses to test the differences between ENA networks based on 

summary statistics, being able to make such comparisons directly from visualizations 

can not only facilitate researchers’ interpretation of ENA network models, but also 

communicate their findings with broader audiences. For example, Fernandez-Nieto et 

al. [8] applied ENA to model and visualize nurses’ positioning during clinical 

simulations and invited nurse teachers who did not have expertise in ENA to make 

sense of the ENA visualizations. Those teachers constructed consistent narratives about 

ENA network models and valued ENA visualizations as an accessible shared language 

for joint sense-making between researchers and practitioners.  

Furthermore, we hope that this work provides a helpful perspective for visualization 

designers in reflecting on design choices in designing visualization for various 

purposes, but we recognize that designing is a versatile task and an iterative process 

that cannot be prescribed with fixed guidelines. Therefore, we look forward to being 

inspired by studies that use ENA visualizations in various contexts and disciplines.  
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